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大语言模型应用面临的问题

▶ 信息更新不及时，时效性不足
▶ 信息覆盖面不够

▶ 长尾知识不足
▶ 专业知识不足

▶ 信息修改不方便
▶ 推理能力不足

▶ 数学计算精度不够
▶ 符号推理能力不够：微积分、解方程……

▶ 无法与外界交互
▶ 发邮件
▶ 购物
▶ 画画
▶ 操控设备

1 total: 47



解决上述问题的可行办法

▶ 使用搜索引擎：
▶ 信息可以随时更新，确保永远最新
▶ 可以方便添加大量专业知识和长尾知识，搜索引擎数据规模不受模型参数限制，
增加数据规模消耗的算力远小于语言模型训练

▶ 数据可以方便地增加、删除、修改
▶ 调用外部工具：

▶ 调用数学计算工具
▶ 调用符号推理工具
▶ 调用环境交互工具（发邮件、画画、操控设备……）
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Retrieval-based LMs and Applications (ACL2023 Tutorial)

https://acl2023-retrieval-lm.github.io/
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Retrieval-based LMs and Applications (ACL2023 Tutorial)

Challenge: Scaling retrieval-based LMs

4

LM

Datastore

LM

A small LM + a large datastore  a large parametric LM?≈

vs.

LM

# of parameters # of tokens

kNN-LM (Khandelwal et al., 2020) 250M  3B

NPM (Min et al., 2023) 350M 1B

Atlas (Izacard et al., 2022) 11B ~30B

RETRO (Borgeaud et al., 2021) 7B 2T

REPLUG (Shi et al., 2023) 175B ~5B

Datastore

≤

≤

https://acl2023-retrieval-lm.github.io/
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Retrieval-augmented: LLM vs. Non-LLM

Retrieval-augmented LMs
(ACL2023 tutrial)

Retrieval-augmented LLMs
(This talk)

目的 回答问题，通常答案较短，答对关
键信息即可

回答问题，通常要生成较长、较完
整的回复

模型 规模较小，可以是编码器、编码器-
解码器、解码器模型

规模较大（百亿参数以上），通常只
考虑解码器模型

评价 答案的准确性，模型的困惑度，自
动评价为主

答案的合理性、真实性等，经常要
人工评价和自动评价相结合

技术 可以修改语言模型和检索系统的架
构，可以分别训练或联合训练

不修改语言模型和检索系统的架构，
通过微调和提示训练大语言模型，
不联合训练语言模型和检索模型

4 total: 47
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WebGPT

▶ 第一个千亿参数级别语言
模型（GPT-3）结合搜索
引擎的工作

▶ 模仿人类搜索的过程

▶ 生成带引用的搜索结果，
便于溯源

▶ 已经被应用于New Bing
和ChatGPT检索插件

Table 2: An answer produced by our 175B best-of-64 model to a randomly-chosen question from the
ELI5 test set (not cherry-picked). The full text of the references can be found in Appendix J, along
with answers from our human demonstrators and the ELI5 dataset. Further samples are available at
https://openaipublic.blob.core.windows.net/webgpt-answer-viewer/index.html.

Question Why did we decide that certain words were "bad" and shouldn’t be used in social settings?

Answer We have all been taught that there are certain words that should not be used in public, at least
not without good reason. But why do some words fall into this category while others do not? It
turns out that there is not a single answer to this question, as each word has a different history
and carries different meanings in different cultures and families [2]. However, there are some
general categories that "bad" words tend to fall into. "Bad" words generally relate to parts of life
that we don’t like talking about in public, like bathroom functions, or negative ways of talking
about people’s religion, skin color, ability, or gender [3]. Often, people say bad words when
they are experiencing strong emotions, and those words are linked to our emotions [3].

References
(titles only)

[1, 2, 3] Why Are Some Words ‘Bad’? | Vermont Public Radio (www.vpr.org)
[4] On Words: ‘Bad’ Words and Why We Should Study Them | UVA Today (news.virginia.edu)
[5] The Science of Curse Words: Why The &amp;@$! Do We Swear? (www.babbel.com)

To make it easier for humans to provide demonstrations, we designed a graphical user interface for
the environment (see Figure 1(a)). This displays essentially the same information as the text-based
interface and allows any valid action to be performed, but is more human-friendly. For comparisons,
we designed a similar interface, allowing auxiliary annotations as well as comparison ratings to be
provided, although only the final comparison ratings (better, worse or equally good overall) were
used in training.

For both demonstrations and comparisons, we emphasized that answers should be relevant, coherent,
and supported by trustworthy references. Further details about these criteria and other aspects of our
data collection pipeline can be found in Appendix C.

3.2 Training

The use of pre-trained models is crucial to our approach. Many of the underlying capabilities required
to successfully use our environment to answer questions, such as reading comprehension and answer
synthesis, emerge as zero-shot capabilities of language models [Brown et al., 2020]. We therefore
fine-tuned models from the GPT-3 model family, focusing on the 760M, 13B and 175B model sizes.

Starting from these models, we used four main training methods:

1. Behavior cloning (BC). We fine-tuned on the demonstrations using supervised learning,
with the commands issued by the human demonstrators as labels.

2. Reward modeling (RM). Starting from the BC model with the final unembedding layer
removed, we trained a model to take in a question and an answer with references, and output
a scalar reward. Following Stiennon et al. [2020], the reward represents an Elo score, scaled
such that the difference between two scores represents the logit of the probability that one
will be preferred to the other by the human labelers. The reward model is trained using a
cross-entropy loss, with the comparisons as labels. Ties are treated as soft 50% labels.

3. Reinforcement learning (RL). Once again following Stiennon et al. [2020], we fine-tuned
the BC model on our environment using PPO [Schulman et al., 2017]. For the environment
reward, we took the reward model score at the end of each episode, and added this to a KL
penalty from the BC model at each token to mitigate overoptimization of the reward model.

4. Rejection sampling (best-of-n). We sampled a fixed number of answers (4, 16 or 64) from
either the BC model or the RL model (if left unspecified, we used the BC model), and
selected the one that was ranked highest by the reward model. We used this as an alternative
method of optimizing against the reward model, which requires no additional training, but
instead uses more inference-time compute.

We used mutually disjoint sets of questions for each of BC, RM and RL.
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WebGPT

▶ 数据生产分为两个部分——demostration（演示）和comparison（对比）
▶ demonstration就是按照人类使用搜索引擎时的操作，针对给定的问题，对搜索
引擎返回的结果，进行过滤。

▶ comparison就是针对某个特定的问题，模型生成两个答案，标注人员先对每个
答案从trustworthness（可信度）、来源对结果的支持程度进行打分。在对两个
答案进行对比打分。

Nakano et al. “WebGPT: Browser-assisted question-answering with human feedback”, arxiv2112.09332v3.
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WebGPT

Table 1: Actions the model can take. If a model generates any other text, it is considered to be an
invalid action. Invalid actions still count towards the maximum, but are otherwise ignored.

Command Effect

Search <query> Send <query> to the Bing API and display a search results page
Clicked on link <link ID> Follow the link with the given ID to a new page
Find in page: <text> Find the next occurrence of <text> and scroll to it
Quote: <text> If <text> is found in the current page, add it as a reference
Scrolled down <1, 2, 3> Scroll down a number of times
Scrolled up <1, 2, 3> Scroll up a number of times
Top Scroll to the top of the page
Back Go to the previous page
End: Answer End browsing and move to answering phase
End: <Nonsense, Controversial> End browsing and skip answering phase

2 Environment design

Previous work on question-answering such as REALM [Guu et al., 2020] and RAG [Lewis et al.,
2020a] has focused on improving document retrieval for a given query. Instead, we use a familiar
existing method for this: a modern search engine (Bing). This has two main advantages. First,
modern search engines are already very powerful, and index a large number of up-to-date documents.
Second, it allows us to focus on the higher-level task of using a search engine to answer questions,
something that humans can do well, and that a language model can mimic.

For this approach, we designed a text-based web-browsing environment. The language model is
prompted with a written summary of the current state of the environment, including the question, the
text of the current page at the current cursor location, and some other information (see Figure 1(b)).
In response to this, the model must issue one of the commands given in Table 1, which performs an
action such as running a Bing search, clicking on a link, or scrolling around. This process is then
repeated with a fresh context (hence, the only memory of previous steps is what is recorded in the
summary).

While the model is browsing, one of the actions it can take is to quote an extract from the current
page. When this is performed, the page title, domain name and extract are recorded to be used later
as a reference. Browsing then continues until either the model issues a command to end browsing,
the maximum number of actions has been reached, or the maximum total length of references has
been reached. At this point, as long as there is at least one reference, the model is prompted with the
question and the references, and must compose its final answer.

Further technical details about our environment can be found in Appendix A.

3 Methods

3.1 Data collection

Guidance from humans is central to our approach. A language model pre-trained on natural language
would not be able to use our text-based browser, since it does not know the format of valid commands.
We therefore collected examples of humans using the browser to answer questions, which we call
demonstrations. However, training on demonstrations alone does not directly optimize answer quality,
and is unlikely to lead far beyond human performance [Stiennon et al., 2020]. We therefore collected
pairs of model-generated answers to the same question, and asked humans which one they preferred,
which we call comparisons.

For both demonstrations and comparisons, the vast majority of questions were taken from ELI5 [Fan
et al., 2019], a dataset of long-form questions. For diversity and experimentation, we also mixed in
a small number of questions from other sources, such as TriviaQA [Joshi et al., 2017]. In total, we
collected around 6,000 demonstrations, 92% of which were for questions from ELI5, and around
21,500 comparisons, 98% of which were for questions from ELI5. A more detailed breakdown of the
questions we used along with post-processing details can be found in Appendix B.

3

Nakano et al. “WebGPT: Browser-assisted question-answering with human feedback”, arxiv2112.09332v3.

5 (3) total: 47



WebGPT

 [Shared with external contractors] 

 Thank you for working with us on this project. 

 We have created a text-based web browser for our AI system to use. We would like you to help 
 us collect demonstrations of people using our browser to answer open-ended questions. 

 Your task is to first  browse  to collect quotes that  could be used to write an answer, and then to 
 write an  answer  that is helpful to the person asking  the question, and well-supported by the 
 quotes you just collected. 

 This is what the app looks like while  browsing  : 

 This is what the app looks like while  answering  : 
Nakano et al. “WebGPT: Browser-assisted question-answering with human feedback”, arxiv2112.09332v3.
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WebGPT
This is what the comparisons website looks like(upper half):

 [Shared with external contractors] 

 Thank you for working with us on this project. We are working on AI systems that research and 
 answer questions, and would like you to help us rate and compare the answers. 

 If you have worked with us before to help us rate and compare sets of sources, this is similar, 
 except now we are comparing actual answers, and so the process is a little different. 

 This is what the comparisons website looks like: 

Nakano et al. “WebGPT: Browser-assisted question-answering with human feedback”, arxiv2112.09332v3.
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WebGPT

This is what the comparisons website looks like(lower half):

 [Shared with external contractors] 

 Thank you for working with us on this project. We are working on AI systems that research and 
 answer questions, and would like you to help us rate and compare the answers. 

 If you have worked with us before to help us rate and compare sets of sources, this is similar, 
 except now we are comparing actual answers, and so the process is a little different. 

 This is what the comparisons website looks like: 

Nakano et al. “WebGPT: Browser-assisted question-answering with human feedback”, arxiv2112.09332v3.
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WebGPT

训练过程：

▶ Behavior cloning (BC).使用用户行为数据对模型进行fine-tune。
▶ Reward modeling (RM).使用BC模型去掉softmax层为起点，根据用户对多个
结果的排序，使用交叉熵loss，训练一个奖励模型。

▶ Reinforcement learning (RL).利用奖励模型作为奖励信息，对BC模型进
行PPO强化学习训练。把RM的分数作为环境奖励加到每个episode的结尾，并
把它作为KL惩罚加到每一个token上以避免过度优化。

▶ Rejection sampling (best-of-n). 从BC或者RL模型中采用若干（4/16/64）个结
果，选择其中RM打分最高的那个。使用这种方法可以不用对模型进行强化学
习RL训练，以减少训练时间，但会增加推理时间。

可以看到，这个过程跟OpenAI后来提出的RLHF方法很相似。
Nakano et al. “WebGPT: Browser-assisted question-answering with human feedback”, arxiv2112.09332v3.
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WebGPT

ELI5（问题都来自Reddit的“Explain Like I’m Five”板块）结果：

▶ 采用训练RM时相同的评价方法，
给定系统生成的结果和人工结
果，由标注员选择哪个结果更好
（可以选择打平）

▶ 结果显示，最大的模型（175B
best-of-64）跟人工标注员生成
的结果相比，在56%的情况下被
选为更好的结果；跟ELI5的参考
答案相比，69%的情况下被选为
更好的结果。
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(a) WebGPT vs. human demonstrations.
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(b) WebGPT vs. ELI5 reference answers.

Figure 2: Human evaluations on ELI5 comparing against (a) demonstrations collected using our web
browser, (b) the highest-voted answer for each question. The amount of rejection sampling (the n in
best-of-n) was chosen to be compute-efficient (see Figure 8). Error bars represent ±1 standard error.

• Fact-checking. It is difficult to assess the factual accuracy of answers without references:
even with the help of a search engine, expertise is often required. However, WebGPT and
human demonstrators provide answers with references.

• Objectivity. The use of minimal instructions makes it harder to know what criteria are
being used to choose one answer over another. Our more detailed instructions enable more
interpretable and consistent comparisons.

• Blinding. Even with citations and references stripped, WebGPT composes answers that
are different in style to Reddit answers, making the comparisons less blinded. In contrast,
WebGPT and human demonstrators compose answers in similar styles. Additionally, some
ELI5 answers contained links, which we instructed labelers not to follow, and this could
have biased labelers against those answers.

• Answer intent. People ask questions on ELI5 to obtain original, simplified explanations
rather than answers that can already be found on the web, but these were not criteria we
wanted answers to be judged on. Moreover, many ELI5 questions only ever get a small
number of low-effort answers. With human demonstrations, it is easier to ensure that the
desired intent and level of effort are used consistently.

4.2 TruthfulQA

To further probe the abilities of WebGPT, we evaluated WebGPT on TruthfulQA [Lin et al., 2021], an
adversarially-constructed dataset of short-form questions. TruthfulQA questions are crafted such that
they would be answered falsely by some humans due to a false belief or misconception. Answers are
scored on both truthfulness and informativeness, which trade off against one another (for example, “I
have no comment” is considered truthful but not informative).

We evaluated both the base GPT-3 models used by WebGPT and the WebGPT models themselves
on TruthfulQA. For GPT-3, we used both the “QA prompt” and the “helpful prompt” from Lin
et al. [2021], and used the automated metric, since this closely tracks human evaluation on answers
produced by the GPT-3 model family. For WebGPT, we used human evaluation, since WebGPT’s
answers are out-of-distribution for the automated metric. TruthfulQA is a short-form dataset, so
we also truncated WebGPT’s answers to 50 tokens in length, and then removed any trailing partial
sentences.3

3This inadvertently resulted in a small number of empty answers, which were considered truthful but not
informative. This affected 74 answers in total, around 3% of answers.
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WebGPT
TruthfulQA（一些容易出现真实性错误的问题）结果：

▶ 可以看到WebGPT
无论在“真实”还
是“真实且有信息”
方面都远好原始
的GPT-3模型

▶ 但跟人工结果相比
仍然有较大差距。

760M 13B 175B 760M 13B 175B 760M
bo4

13B
bo16

175B
bo64

0
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40

60

80

100

Human % truthful and informative

Human % truthful

WebGPTGPT-3
(QA prompt)

GPT-3
(helpful prompt)

Truthful (%) Truthful and informative (%)

Figure 3: TruthfulQA results. The amount of rejection sampling (the n in best-of-n) was chosen to
be compute-efficient (see Figure 8). Error bars represent ±1 standard error.

Our results are shown in Figure 3. All WebGPT models outperform all GPT-3 models (with both
prompts) on both the percentage of truthful answers and the percentage of truthful and informative
answers. Moreover, the percentage of truthful and informative answers increases with model size for
WebGPT, unlike GPT-3 with either prompt. Further qualitative analysis of WebGPT’s performance
on TruthfulQA is given in Section 6.1.

4.3 TriviaQA

We also evaluated the WebGPT 175B BC model on TriviaQA [Joshi et al., 2017]. These results are
given in Appendix G.

5 Experiments

5.1 Comparison of training methods

We ran a number of additional experiments comparing reinforcement learning (RL) and rejection
sampling (best-of-n) with each other and with the behavior cloning (BC) baseline. Our results are
shown in Figures 4 and 5. Rejection sampling provides a substantial benefit, with the 175B best-of-64
BC model being preferred 68% of the time to the 175B BC model. Meanwhile, RL provides a smaller
benefit, with the 175B RL model being preferred 58% of the time to the 175B BC model.

Even though both rejection sampling and RL optimize against the same reward model, there are
several possible reasons why rejection sampling outperforms RL:

• It may help to have many answering attempts, simply to make use of more inference-time
compute.

• The environment is unpredictable: with rejection sampling, the model can try visiting many
more websites, and then evaluate the information it finds with the benefit of hindsight.

• The reward model was trained primarily on data collected from BC and rejection sampling
policies, which may have made it more robust to overoptimization by rejection sampling
than by RL.

• RL requires hyperparameter tuning, whereas rejection sampling does not.
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项目 Projects

▶ Perplexity.ai
▶ NeevaAI
▶ YouChat (You.com)
▶ New Bing
▶ Bard
▶ ChatGPT with Web Access
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Perplexity.ai

Perplexity.ai

https://perplexity.ai

7 total: 47

https://perplexity.ai


YouChat
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Google Bard
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New Bing

10 total: 47



生成式搜索引擎的可验证性评估

▶ 人工评价了四个受欢迎的生成式搜索引
擎：Bing Chat, NeevaAI, perplexity.ai,
YouChat

▶ 发布了人工审核注释，为进一步开发可
信赖的生成式搜索引擎提供了数据支持

▶ 定义了引用召回率和引用精度的评价指
标，以鼓励开发全面和正确引用的系统

▶ 发现1：所生成的回复流畅性较好，而且
人类评价的有用性也较高

▶ 发现2：所生成的引用信息的准确率和召
回率都不高

Fluency (↑)

Average Over
All Queries

Bing Chat 4.40
NeevaAI 4.43
perplexity.ai 4.51
YouChat 4.59

Average 4.48

Fluency (↑)

AllSouls davinci-debate
ELI5

WikiHowKeywords
KILT Live

Bing Chat 4.31 4.37 4.36 4.30 4.41
NeevaAI 4.50 4.53 4.50 4.42 4.42
perplexity.ai 4.43 4.54 4.55 4.47 4.45
YouChat 4.58 4.65 4.56 4.53 4.52

Average 4.45 4.52 4.49 4.43 4.45

Fluency (↑)

NaturalQuestions

List Long Answer Table Long Answer Paragraph Long Answer No Answer
Has Short No Short Has Short No Short Has Short No Short

Bing Chat 4.49 4.52 4.46 4.30 4.54 4.41 4.39
NeevaAI 4.45 4.40 4.31 4.28 4.41 4.49 4.43
perplexity.ai 4.69 4.54 4.59 4.41 4.73 4.43 4.37
YouChat 4.65 4.56 4.60 4.45 4.66 4.69 4.64

Average 4.57 4.50 4.49 4.36 4.58 4.50 4.46

Table 3: Human evaluation results for generated response fluency (five-point Likert ratings). In general, existing
generative search engines produce fluent text. Performance is notably lower on NaturalQuestions queries with
table-type long answers and no short answers, which often require aggregating information within or across cita-
tions.

that, annotators judge generated responses as fluent
and helpful for answering the user’s input query.

Comparing fluency and perceived utility be-
tween generative search engines. Comparing
fluency and perceived utility ratings between the
generative search engines (aggregated over all re-
sponses), we see that Bing Chat receives the lowest
fluency / perceived utility ratings (4.40 / 4.34), fol-
lowed by NeevaAI (4.43 / 4.48), perplexity.ai (4.51
/ 4.56), and YouChat (4.59 / 4.62).

Comparing fluency across query distributions.
Comparing average fluency ratings across different
query distributions, we see similar ratings between
NaturalQuestions queries that have a long answer
(i.e., an extractive answer of some length exists on
Wikipedia) and non-NaturalQuestions distributions
(4.50 vs. 4.47, respectively). Comparing average
fluency ratings between NaturalQuestions subdistri-
butions, we see that generated responses to queries
that have a short extractive answer are generally
more fluent (4.55) than responses to queries with
only a long answer (4.46) or those without a long
answer (4.46), perhaps because responses to ques-
tions with short answers are generally shorter and
often only require factoid knowledge.

A notable outlier distribution is NaturalQues-
tions queries with table-type long answers and no
short answers, where system responses are dra-

matically less fluent (average of 4.36 across sys-
tems vs. average of 4.48 across all query distribu-
tions). These challenging queries often require ag-
gregating information across table cells or retrieved
sources, since the lack of a short answer implies
that no single Wikipedia table cell directly answers
the question (e.g., the query “how many grammys
does beyonce have without destiny’s child”). When
the retrieved webpages do not contain a clear ex-
tractive answer to the query, but contain facts that
seem relevant (e.g., information about Destiny’s
Child’s first Grammy, or Beyonce’s total number
of career Grammy awards), the generated response
may become a stilted agglomeration of statements
from various sources, reducing overall fluency.

Comparing perceived utility across query dis-
tributions. On the other hand, perceived utility
can differ substantially between different query dis-
tributions. Perceived utility is much higher for
NaturalQuestions queries containing a long answer
(4.59), as opposed to non-NaturalQuestions queries
(4.43). Comparing between different NaturalQues-
tions subdistributions, we see that perceived util-
ity is highest for queries that have a short answer
(4.62), followed by queries that have only a long an-
swer (4.55), and finally by queries that have no long
(or short) answer (4.52). Overall, perceived utility
decreases as queries require longer-form and less-

Perceived Utility (↑)

Average Over
All Queries

Bing Chat 4.34
NeevaAI 4.48
perplexity.ai 4.56
YouChat 4.62

Average 4.50

Perceived Utility (↑)

AllSouls davinci-debate
ELI5

WikiHowKeywords
KILT Live

Bing Chat 4.15 4.19 4.19 4.09 4.37
NeevaAI 4.44 4.39 4.54 4.46 4.42
perplexity.ai 4.39 4.60 4.54 4.50 4.51
YouChat 4.53 4.54 4.53 4.50 4.63

Average 4.38 4.43 4.45 4.39 4.48

Perceived Utility (↑)

NaturalQuestions

List Long Answer Table Long Answer Paragraph Long Answer No Answer
Has Short No Short Has Short No Short Has Short No Short

Bing Chat 4.63 4.49 4.49 4.47 4.53 4.40 4.38
NeevaAI 4.65 4.57 4.43 4.38 4.43 4.63 4.49
perplexity.ai 4.71 4.61 4.60 4.55 4.77 4.58 4.50
YouChat 4.72 4.64 4.70 4.54 4.77 4.77 4.70

Average 4.68 4.58 4.55 4.49 4.62 4.60 4.52

Table 4: Human evaluation results for perceived utility of generated responses (five-point Likert ratings). In general,
responses from existing generative search engines appear informative and useful.

extractive answers (e.g., factoid NaturalQuestions
queries with short answers versus ELI5 queries).

4.2 Citation Recall and Precision

Table 5 presents generative search engine citation
recall across the evaluated query distributions, and
Table 6 presents citation precision.

Existing generative search engines often do not
cite comprehensively or correctly. When aver-
aging across all systems, a mere 51.5% of gener-
ated statements are fully supported with citations
(recall), and only 74.5% of citations fully support
their associated statements (precision). We believe
these results are unacceptably low for systems that
are quickly becoming a popular tool for answer-
ing user queries and already have millions of users,
especially given that generated responses often ap-
pear informative and useful.

Comparing citation recall and precision be-
tween generative search engines. Citation re-
call and precision varies dramatically between dif-
ferent generative search engines. On average, per-
plexity.ai achieves the highest average recall (68.7),
compared to NeevaAI (67.6), Bing Chat (58.7),
and YouChat (11.1). On the other hand, Bing Chat
achieves the highest precision (89.5), followed by
perplexity.ai (72.7), NeevaAI (72.0), and YouChat
(63.6). A gap of nearly 58% separates the system
with the highest and lowest recall (perplexity.ai vs.

YouChat), and the gap between the systems with
the highest and lowest precision is almost 25%
(Bing Chat vs. YouChat).

Comparing citation recall across query distri-
butions. Modifying the evaluation query distri-
bution appears to affect citation recall more than
citation precision. For example, the gap in cita-
tion recall between NaturalQuestions queries with
a long answer and non-NaturalQuestions queries
is nearly 11% (58.5 vs. 47.8, respectively). Simi-
larly, the difference in citation recall between Nat-
uralQuestions queries with and without short an-
swers is nearly 10% (63.4 for queries with a short
answer, 53.6 for queries with only a long answer,
and 53.4 for queries with no long or short answer).

We hypothesize that citation recall is driven by
the relevance of retrieved webpages. In the ab-
sence of retrieved evidence that directly answers
the input user query, systems generate statements
that are unsubstantiated by citations, resulting in
lower recall. For example, generative search en-
gines struggle with citation recall when evaluated
on the open-ended AllSouls essay questions (aver-
age recall of 44.3), because these queries generally
have no extractive answer on the Internet.

Comparing citation precision across query
distributions. Precision on NaturalQuestions
queries with long answers is higher than non-
NaturalQuestions distributions (76.1 vs. 72.3, re-

Citation Recall (%; ↑)

Average Over
All Queries

Bing Chat 58.7
NeevaAI 67.6
perplexity.ai 68.7
YouChat 11.1

Average 51.5

Citation Recall (%; ↑)

AllSouls davinci-debate
ELI5

WikiHowKeywords
KILT Live

Bing Chat 55.6 57.1 59.8 59.9 50.7
NeevaAI 55.3 66.3 66.6 61.6 72.5
perplexity.ai 63.0 64.2 64.8 58.1 74.6
YouChat 3.2 3.9 3.0 4.6 12.1

Average 44.3 47.9 48.5 46.0 52.5

Citation Recall (%; ↑)

NaturalQuestions

List Long Answer Table Long Answer Paragraph Long Answer No Answer
Has Short No Short Has Short No Short Has Short No Short

Bing Chat 74.1 60.6 63.5 49.2 72.1 66.3 61.9
NeevaAI 73.0 64.2 69.5 65.1 75.0 74.8 65.6
perplexity.ai 85.3 74.4 79.6 62.4 84.9 75.9 68.4
YouChat 21.6 16.6 30.6 11.5 31.6 21.8 17.8

Average 63.5 53.9 60.8 47.1 65.9 59.7 53.4

Table 5: Human evaluation results of citation recall in existing generative search engines. Citation recall is con-
cerningly low (many generated statements are not fully supported by citations), especially given that these systems
already have millions of users and may serve as a primary tool for fulfilling user information needs.

spectively). Examining results on individual query
distributions, generative search engines have high-
est precision when evaluated on NaturalQuestions
queries with paragraph answer types (precision of
81.5 when a short answer exists and 78.7 when only
a long answer exists). On the other hand, citation
precision is lowest when systems are evaluated on
AllSouls open-ended essay questions (67.8) and
davinci-debate queries (70.3). Comparing between
NaturalQuestions subdistributions, average system
precision is higher on queries with short answers
(77.4) than those with only long answers (74.8) or
no long answer (73.5).

Summary. To summarize our human evaluation
results, Table 7 presents evaluated systems’ average
citation F1 and Figure 3 plots average perceived
utility against average citation F1 (we omit fluency,
which is generally high for all systems). Existing
systems make different trade-offs between citation
recall, citation precision, and perceived utility. See
Appendix D for full citation F1 results on each
query distribution.

4.3 Citation Recall and Precision are
Inversely Related to Fluency and
Perceived Utility

We find that citation recall and precision are in-
versely correlated with fluency and perceived utility
in existing generative search engines. Calculating

20 40 60
Citation F1

4.4

4.5

4.6

Pe
rc

ei
ve

d 
Ut

ilit
y

Bing Chat

NeevaAI

perplexity.ai
YouChat

Figure 3: Averaged perceived utility plotted against av-
eraged citation F1 for each evaluated generative search
engine. Different systems make different trade-offs be-
tween perceived utility and citation F1. Note that these
systems are difficult to directly compare since they may
have different abstention rates (Table 2).

the Pearson correlation coefficient between each of
citation recall and precision against fluency and per-
ceived utility shows a strong negative correlation,
with precision showing a stronger trend (Table 8).
For example, Bing Chat achieves the highest pre-
cision, but has the lowest fluency and perceived
utility. In contrast, YouChat has the lowest recall
and precision, but its responses attain the highest
fluency and perceived utility ratings.

This inverse relationship between citation recall
and precision versus fluency and perceived utility

Citation Precision (%; ↑)

Average Over
All Queries

Bing Chat 89.5
NeevaAI 72.0
perplexity.ai 72.7
YouChat 63.6

Average 74.5

Citation Precision (%; ↑)

AllSouls davinci-debate
ELI5

WikiHowKeywords
KILT Live

Bing Chat 88.8 88.8 87.6 87.2 92.1
NeevaAI 69.8 74.1 75.7 73.8 74.0
perplexity.ai 61.7 68.4 64.9 66.3 77.4
YouChat 51.1 50.0 64.7 57.9 71.1

Average 67.8 70.3 73.2 71.3 78.7

Citation Precision (%; ↑)

NaturalQuestions

List Long Answer Table Long Answer Paragraph Long Answer No Answer
Has Short No Short Has Short No Short Has Short No Short

Bing Chat 86.8 86.8 89.0 92.5 92.9 91.3 90.8
NeevaAI 73.2 67.6 67.1 64.2 73.4 76.5 70.8
perplexity.ai 82.1 81.0 76.0 71.7 83.8 79.7 74.0
YouChat 63.3 62.7 64.8 56.1 75.7 67.5 58.6

Average 76.4 74.5 74.2 71.1 81.5 78.7 73.5

Table 6: Human evaluation results of citation precision in existing generative search engines. Citation precision is
concerningly low (many generated citations do not support their associated statements), especially given that these
systems already have millions of users and may serve as a primary tool for fulfilling user information needs.

Citation F1 (↑)

Average Over All Queries

Bing Chat 70.9%
NeevaAI 69.8%
perplexity.ai 70.6%
YouChat 18.9%

Average 57.6%

Table 7: Citation F1 of evaluated generative search en-
gines, averaged over all query distributions. See Ta-
ble 12 in Appendix D for citation F1 results on individ-
ual query distributions.

is symptomatic of a trade-off between faithfulness
and abstractiveness (Ladhak et al., 2022). In partic-
ular, we find that generated statements often closely
paraphrase or directly copy from their associated
citations (see §4.4 for further analysis). This re-
sults in high citation precision (since extractively
copied text is almost always fully supported by the
source citation), but low fluency and perceived util-
ity (since the extractive snippets may not actually
answer the user’s input query). In contrast, systems
that generate fewer citations or frequently deviate
from cited content (resulting in low citation recall
and precision) have greater freedom to generate
fluent responses that appear relevant and helpful
to the user’s input query.

This tradeoff is especially apparent on the All-
Souls query distribution, which contains open-

Pearson Correlation (r)

Fluency Perceived Utility

Citation Recall -0.76 -0.53
Citation Precision -0.84 -0.96

Table 8: Citation recall and precision are inversely cor-
related with fluency and perceived utility in existing
generative search engines—responses that are fluent
and appear more helpful often have lower citation re-
call and precision.

ended essay questions. AllSouls queries often can-
not be answered via extraction from a single web-
page on the Internet. For example, given the query
“Is cooperation or competition the driving force
guiding the evolution of society?”, the results of a
conventional search engine all center around bio-
logical evolution, rather than societal evolution.
Figure 4 qualitatively contrasts responses from
Bing Chat and YouChat to this particular query.
Bing Chat achieves the highest precision among
evaluated systems on AllSouls, but this is mostly
a byproduct of its tendency to copy text from its
cited webpages. Since AllSouls queries cannot
be effectively answered via extraction, Bing Chat
responses often do not actually answer the user’s
input query—instead, the generated response may
simply state irrelevant statements directly copied
from the cited sources, resulting in high citation
precision but low perceived utility (Figure 4). In

Liu, et al., Evaluating Verifiability in Generative Search Engines, arxiv2304.09848
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让大语言模型生成带引用的文本

▶ 该工作研究了一种新的LLM生成范式评
测基准ALCE：
▶ 给定一个问题，系统生成文本，同
时从一个大型检索语料库中提供引
文。每个语句可能包含多个引文

▶ 文章从三个维度构建了自动评价指
标：流利性、正确性、引用质量

▶ 文章显示这些自动评价指标与人类
评价强相关

▶ 文章发现：尽管所有的系统都能够提供
流畅和一致的回答，但在正确性和引用
质量方面仍有很大的改进空间，例如：
在ELI5数据集上，ChatGPT基线
有49%的生成没有得到引用段落的完全
支持。

Enabling Large Language Models to Generate Text with Citations

Tianyu Gao Howard Yen Jiatong Yu Danqi Chen
Department of Computer Science, Princeton University

{tianyug,danqic}@cs.princeton.edu {hyen,jiatongy}@princeton.edu

Abstract

Large language models (LLMs) have emerged
as a widely-used tool for information seeking,
but their generated outputs are prone to hal-
lucination. In this work, we aim to enable
LLMs to generate text with citations, improv-
ing their factual correctness and verifiability.
Existing work mainly relies on commercial
search engines and human evaluation, mak-
ing it challenging to reproduce and compare
with different modeling approaches. We pro-
pose ALCE, the first benchmark for Automatic
LLMs’ Citation Evaluation. ALCE collects a
diverse set of questions and retrieval corpora
and requires building end-to-end systems to
retrieve supporting evidence and generate an-
swers with citations. We build automatic met-
rics along three dimensions—fluency, correct-
ness, and citation quality—and demonstrate
their strong correlation with human judge-
ments. Our experiments with state-of-the-art
LLMs and novel prompting strategies show
that current systems have considerable room
for improvements—for example, on the ELI5
dataset, even the best model has 49% of its gen-
erations lacking complete citation support. Our
extensive analyses further highlight promising
future directions, including developing better
retrievers, advancing long-context LLMs, and
improving the ability to synthesize information
from multiple sources.1

1 Introduction

Large language models (LLMs; Brown et al., 2020)
have gained increasing popularity as a tool for in-
formation seeking. While they generate engaging
and coherent responses, their output is prone to
hallucination and often contains factually incorrect
information (Ji et al., 2023). This makes it harder
for users to trust and verify LLMs’ generated out-
puts without any supporting evidence.

1Our code and data are available at https://github.
com/princeton-nlp/ALCE.

When did the US break away from England?

The US took the first step towards gaining independence from 
GB when it declared independence on July 2, 1776 (although the 
event is now commemorated on July 4, 1776, the date when the 
Declaration of Independence was officially adopted by Congress) 
[1][2]. The Treaty of Paris was later signed on September 3, 1783, 
formally separating the United States from the British Empire [3].

Question

Model output

LLM

Corpus

Re
tr

ie
ve

[1] Decolonization of 
the Americas:  … in-
dependence from GB 
on July 2, 1776 …

[3] American Revolu-
tion: … The Treaty of 
Paris was signed 
September 3, 1783 ...

[2] Decolonization: …  
It was officially adop-
ted by Congress on 
July 4, 1776 …

…

Figure 1: The task setup of ALCE. Given a question,
the system generates text while providing citing pas-
sages from a large retrieval corpus. Each statement may
contain multiple citations (e.g., [1][2]).

In this work, we study a new generation
paradigm for LLMs, where we require LLMs to
provide citations to one or a few text passages for
any statement they generate (Figure 1). Incorpo-
rating citations brings several benefits: (1) Users
can easily verify LLMs’ claims with the provided
citations; (2) LLMs can generate text that faithfully
follows cited passages, which has the promise to
improve correctness and alleviate hallucination.

Multiple commercial systems have adopted this
paradigm: Bing Chat2 and perplexity.ai3 respond to
user questions in natural language with references
to Web pages. Nakano et al. (2021); Menick et al.
(2022) share a similar motiviation, but they mainly
experiment with search engines and closed-source
models, making their results difficult to evaluate.
Retrieval-augmented LLMs (Borgeaud et al., 2022;
Izacard et al., 2022) incorporate retrieved passages
during both training and inference, but do not guar-
antee faithfulness to retrieved passages or explicitly
provide citations. Additionally, previous studies
mostly rely on human evaluation (Nakano et al.,
2021; Menick et al., 2022; Liu et al., 2023), which
is expensive and difficult to reproduce. We argue

2https://www.bing.com/new
3https://www.perplexity.ai
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大语言模型结合搜索引擎 LLMs combined with search engines

概览 Overview

方法 Methods

项目 Projects

我们的工作 Our Work

Content



盘古基础语言模型

▶ 华为诺亚方舟实验室于2021年4月发布了2000亿参数的稠密型的盘古-ケ中文大
语言模型

▶ 2023年3月，我们又发布了1万亿参数的采用MoE架构的稀疏型盘古-ィ大语言
模型

▶ 基于盘古-ィ大语言模型的一个中文子模型，我们继续开发了盘古基础语言模
型：
▶ 大规模数据采集和清洗
▶ 指令微调（Instruct Tuning）
▶ 极致的硬件亲和推理优化

▶ 在此基础上，我们开发了盘古语言模型融合搜索引擎和工具调用的技术

13 total: 47



盘古语言模型融合搜索系统框架结合搜索能力的盘古大模型

搜索 --------[1]---
----------[2]-
--------[3][4]

Summary：

[1]: 知识源1
[2]: 知识源2
[3]: 知识源3
[4]: 知识源4

知识片段

②信息搜集 ③信息整合

用户查询

决策

①搜索决策

盘古语言模型

生成

14 (1) total: 47



盘古语言模型融合搜索系统框架
The Combination of Pangu Sophon and Search Engine

• Framework

Search decision making

Query type/intent analysis

Temporal analysis

Search or not conclusion

Search query generation 

Web/local doc browsing

Web browsing

Quote extraction

Quote re-ranking

Dialogue history

World real-time state

Closed-book answering
Answer

AnswerPages/
Quotes

w/ search

w/o search

Web knowledge Domain knowledge

Web pages Chunks
QA pairs
KBs

Answer composition

Linguistic summarization

Temporal reasoning

Logical reasoning

Adversarial answering

…
Rejection sampling

14 (2) total: 47



样例：回答实时问题Cases: Real-time answering

15 total: 47



样例：回答误导性问题

Cases: Adversarial answering

16 total: 47



样例：拒绝回答问题

Cases: Refuse to answer

17 total: 47



样例：回答长尾问题Cases: Long-tail question answering

18 total: 47



样例：回答代码问题Cases: code answering

19 total: 47
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Tool Learning with Foundation Models

Tool Learning with Foundation Models

Yujia Qin1, Shengding Hu1, Yankai Lin2∗ , Weize Chen1, Ning Ding1, Ganqu Cui1,
Zheni Zeng1, Xuanhe Zhou1, Yufei Huang1, Chaojun Xiao1, Chi Han3, Yi Ren Fung3,

Yusheng Su1, Huadong Wang1, Cheng Qian1, Runchu Tian1, Kunlun Zhu8, Shihao Liang8,
Xingyu Shen1, Bokai Xu1, Zhen Zhang1, Yining Ye1, Bowen Li1, Ziwei Tang5, Jing Yi1,

Yuzhang Zhu1, Zhenning Dai1, Lan Yan1, Xin Cong1, Yaxi Lu1, Weilin Zhao1,
Yuxiang Huang1, Junxi Yan1, Xu Han1, Xian Sun7, Dahai Li7, Jason Phang4,

Cheng Yang5, Tongshuang Wu6, Heng Ji3, Guoliang Li1, Zhiyuan Liu1∗, Maosong Sun1∗

1Tsinghua University, 2Renmin University of China, 3University of Illinois Urbana-Champaign,
4New York University, 5Beijing University of Posts and Telecommunications,

6Carnegie Mellon University, 7Zhihu Inc., 8ModelBest Inc.
qyj20@mails.tsinghua.edu.cn

Abstract

Humans possess an extraordinary ability to create and utilize tools, allowing them to
overcome physical limitations and explore new frontiers. With the advent of recent powerful
foundation models, artificial intelligence systems have the potential to be equally adept in
tool use as humans. This paradigm, which is dubbed as tool learning with foundation models,
combines the strengths of specialized tools and foundation models to achieve enhanced
accuracy, efficiency, and automation in problem-solving. Despite its immense potential,
there is still a lack of a comprehensive understanding of key challenges, opportunities,
and future endeavors in this field. To this end, we present a systematic investigation and
comprehensive review of tool learning in this paper. We first introduce the background
of tool learning, including its cognitive origins, the paradigm shift of foundation models,
and the complementary roles of tools and models. We recapitulate existing tool learning
research and formulate a general tool learning framework: starting from understanding the
user instruction, models should learn to decompose a complex task into several subtasks,
dynamically adjust their plan through reasoning, and effectively conquer each sub-task by
selecting appropriate tools. We also discuss how to train models for improved tool-use
capabilities and facilitate the generalization in tool learning. Considering the lack of a
systematic tool learning evaluation in prior works, we experiment with 18 representative
tools and show the potential of current foundation models in skillfully utilizing tools. Finally,
we discuss several open problems that require further investigation for tool learning, such
as ensuring safe and trustworthy tool use, enabling tool creation with foundation models,
and addressing personalization challenges. Overall, we hope this paper could inspire future
research in integrating tools with foundation models. Relevant codes and datasets are
publicly available for further research exploration1.

“It is not only the violin that shapes the violinist, we are all
shaped by the tools we train ourselves to use.”

— Edsger W. Dijkstra

∗Corresponding authors.
1https://github.com/OpenBMB/BMTools

Author contributions are listed in § 6.
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Tool Learning with Foundation Models

1 Introduction

Tools are extensions of human capabilities designed to enhance productivity, efficiency, and problem-solving
in human activities. Since the dawn of civilization, tools have been integral to the very essence of our
existence (Washburn, 1960). Tool creation and utilization are motivated by a deep-rooted desire to overcome
our physical limitations and discover new territories. More specifically, with advancements in tools, we can
accomplish increasingly complex tasks with ease and efficiency, liberating time and resources to pursue more
ambitious ventures. As such, tools have served as the crucial foundation upon which our cultural and social
practices are built, transforming our modes of learning, communication, working, and entertainment, infusing
these domains with new dimensions of accessibility and interactivity (Gibson et al., 1993). Throughout history,
it is undeniable that human beings have played a pivotal role in the invention and manipulation of tools, which
is a striking manifestation of intelligence (Shumaker et al., 2011). Given the rise of Artificial Intelligence (AI),
one natural question is, does AI possess the potential to be equally adept and capable as its creators?

The prerequisite of the manipulation of tools is a thorough comprehension of the tools’ functionalities, as
well as the ability to understand user intents and perform planning and reasoning for tool use. Before the
advent of powerful foundation models (Bommasani et al., 2021), conducting tool-oriented AI research was
exceedingly challenging. While certain basic tools could be fitted using shallow statistical models or deep
neural models (Pomerleau, 1988; Mnih et al., 2013; Akkaya et al., 2019), their performance and stability
remained inadequate to meet the demands of practical applications, let alone generalizing across various tools.
This is due to the limitations of traditional supervised learning in capturing the complex operations essential
for tool utilization and the insufficiency of trial-and-error approaches like reinforcement learning in mastering
the extensive decision space associated with tool use. In a nutshell, the fundamental limitations in tool use by
earlier AI lie in the insufficient capabilities of the models. Recently, the emergence of more capable foundation
models, characterized by significantly improved capabilities, has rendered tool learning practicable. They have
shown enormous semantic understanding capacity in diverse tasks, spanning the fields of natural language
processing (NLP) (Brown et al., 2020), computer vision (CV) (Ramesh et al., 2022), biology (Jumper et al.,
2021), etc. Additionally, they have demonstrated superior reasoning and decision-making abilities in complex
interactive environments (Nakano et al., 2021). By harnessing the extensive world knowledge garnered during
pre-training, they can perform grounded actions and interact with the real world. Notably, the emergence
of ChatGPT (OpenAI, 2022) highlights the potential of foundation models to understand human intentions,
automate intricate processes, and generate natural responses; the advent of GPT-4 (OpenAI, 2023) offers
immense potential for multi-modal perception, which is essential to the real-world grounding ability.

Therefore, foundation models enable AI to harness tools, which can lead to more potent and streamlined
solutions for real-world tasks. Foundation models are able to decipher complex data, simulate human-like
planning capabilities, and generate a broad spectrum of outputs. Concurrently, specialized tools can be
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I would recommend:
1. The good Investor 
2. Simple Wealth
3. …

Please draw a 
watercolor style 
Eiffel Tower 
painting.

Please make a 
banana yogurt 
for me.

Please recommend 
some books on 
personal finance 
and investing.

Here is a watercolor 
Eiffel Tower painting 
generated by diffusion 
model. 

1/  Slice the banana.
2/  Blend the banana 
slices with yogurt.

Stable
Diffusion

Prompt Eiffel Tower, Watercolor

www.google.com

Investment Book

Figure 1: Tool learning paradigm aims to combine the strengths of specialized tools and foundation models.
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Tool Learning with Foundation Models
2.3 Paradigm Shift of Foundation Models

(a) Physical Interaction-based Tools

Observation

Physical  Tools

Agent Real world Observation
User Tools Observation

Programming Interface

Developer

Graphical User Interface (GUI)

(b) GUI-based Tools (c) Program-based Tools

DatabaseKnowledge Graph

Softwares/SDK

Physical world to  
virtual world

Visual operation to 
programming operation

WebPhotoshop

Figure 2: Tool categorization from the perspective of the user interface: (1) physical interaction-based tools,
(b) GUI-based tools, and (c) program-based tools.

various forms, including declarative languages, programming libraries, software development kits (SDKs),
and even neural network-based tools. These tools are typically used by developers or technical users who
possess a deeper understanding of the underlying data, system or technology, with which the users could
complete complex software applications. The main advantage of program-based tools is that they provide
greater flexibility and customizability than GUI-based tools, and users can build more sophisticated solutions
for current problems. As a result, such tools also have a steeper learning curve than GUI-based tools, they
require a greater degree of technical expertise and programming knowledge, which may not be accessible to
non-technical users. For example, program-based tools can be more time-consuming to set up and configure
and may require more maintenance and support in the learning process. It is noteworthy that, although these
tools pose difficulties for human beings in terms of the learning curve, they may not have the same level of
challenges for foundation models.

It can be seen that the above three interaction modes have varying levels of connectivity with the tool kernel.
They are not strictly mutually exclusive but indicate a tendency to intermingle with each other. Human beings
have the ability to deal with complex tasks by flexibly executing tools of different types. In this paper, we
contend that regardless of the tool type, it is fundamentally possible to leverage foundation models to execute
them by setting up intermediary interfaces. We will introduce ways to unify the interface of different tools for
foundation models in § 3.3.3.

2.3 Paradigm Shift of Foundation Models

In recent years, the field of natural language processing (NLP) has undergone a paradigm shift, marked
by the advent of pre-trained language models (PLMs) (Devlin et al., 2019; Bommasani et al., 2021; Han
et al., 2021). Prior to this breakthrough, NLP was a challenging field that necessitated designing separate
learning objectives for distinct research domains, such as dependency parsing (Kübler et al., 2009), named
entity recognition (Nadeau & Sekine, 2007), and summarization (Nenkova & McKeown, 2012). Despite
the successful design of effective models and methods for these specific tasks, the separated nature of this
paradigm impeded progress toward a holistic comprehension of language, thereby limiting its potential.

The invention of PLMs changes this paradigm. Building on Transformers (Vaswani et al., 2017), PLMs are
trained on massive corpora, from which general linguistic ability and world knowledge are learned. This
technique has expedited the unification of NLP tasks, giving rise to the pre-train-then-fine-tune paradigm,
which has achieved new state-of-the-art performance on several NLP benchmarks, such as GLUE (Wang et al.,
2019b) and SuperGLUE (Wang et al., 2019a). At this stage, each task shares the same starting point and only
diverges as the task-specific adaptation proceeds. The fusion of task paradigms is still ongoing. T5 (Raffel
et al., 2020) transforms all NLP tasks into a text-to-text format with textual descriptions, while GPT-3 (Brown
et al., 2020) has discovered that introducing appropriate textual prompts can yield the desired output for
specific tasks. Prompts, essentially serving as a natural language interface, are widely believed to stimulate the
knowledge learned by PLMs during pre-training. Prompts can enable downstream tasks to be executed without
updating model parameters for big models such as GPT-3. Research even suggests that with appropriate
prompt guidance, models can perform complex reasoning tasks (Wei et al., 2022c; Wang et al., 2022a). Also,
prompts formulated in a natural language format possess remarkable generalization capabilities. Specifically,

8
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外部工具调用的能力进阶

▶ 在上下文学习（ICL）能力较弱时：
▶ 通过有监督微调（SFT）实现外部工具调用（类似ChatGPT Code Interpreter）

▶ 在上下文学习（ICL）能力较强，但思维链（CoT）能力还较弱时：
▶ 通过上下文学习（ICL）实现插件调用（只需提供插件的描述，无需SFT）(插件
形式，类似ChatGPT Plug-ins)

▶ 在思维链（CoT）能力较强时：
▶ 通过思维链（CoT）进行任务分解，实现外部工具的规划和搜索，以完成复杂任
务（Agent形式，类似AutoGPT）
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通过有监督微调（SFT）调用工具（Code Interpreter）

▶ 通过构造指令（Instruction）数据，让模型学会使用工具
▶ 需要模型具备初步的代码生成能力

▶ 使用工具的能力通过SFT内嵌在模型中
▶ 典型工作：

▶ LAMDA (Google)：通过人工标注学会调用计算器、翻译系统和Web搜索等三个
工具

▶ ChatGPT Code Interpreter：用自然语言直接生成Python代码并调用Python引擎
执行所生成代码
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ToolFormer: 一种工具调用的SFT数据生成方法
▶ 工具调用的SFT需要大量人工标注的训练数据
▶ 这篇文章提出了一种工具调用SFT数据的生成方法
▶ 利用已有大语言模型的上下文学习

（In-Context-Learning）能力，生成指令数据，用
于训练另外一个语言模型调用工具的能力：

▶ 每个API需提供少量样例
▶ 把每个API的少量样例，随机组合一个文本
片段，生成一个API调用的指令数据

▶ 检查API调用返回的结果，如果返回结果和
文本片段的内容吻合，则留下作为指令数据，
否则丢弃

▶ 如此可以很容易得到大量的指令数据，用于
训练另外一个语言模型调用工具的能力

▶ 以数学推理能力为例，通过使用Toolformer构造数
据进行微调，仅6.7B的GPT-J大幅超过了远大于它
的175B的GPT-3。

Toolformer: Language Models Can Teach Themselves to Use Tools

Timo Schick Jane Dwivedi-Yu Roberto Dessì† Roberta Raileanu
Maria Lomeli Luke Zettlemoyer Nicola Cancedda Thomas Scialom

Meta AI Research †Universitat Pompeu Fabra

Abstract

Language models (LMs) exhibit remarkable
abilities to solve new tasks from just a few
examples or textual instructions, especially at
scale. They also, paradoxically, struggle with
basic functionality, such as arithmetic or fac-
tual lookup, where much simpler and smaller
models excel. In this paper, we show that
LMs can teach themselves to use external tools
via simple APIs and achieve the best of both
worlds. We introduce Toolformer, a model
trained to decide which APIs to call, when to
call them, what arguments to pass, and how to
best incorporate the results into future token
prediction. This is done in a self-supervised
way, requiring nothing more than a handful of
demonstrations for each API. We incorporate
a range of tools, including a calculator, a Q&A
system, a search engine, a translation system,
and a calendar. Toolformer achieves substan-
tially improved zero-shot performance across
a variety of downstream tasks, often competi-
tive with much larger models, without sacrific-
ing its core language modeling abilities.

1 Introduction

Large language models achieve impressive zero-
and few-shot results on a variety of natural lan-
guage processing tasks (Brown et al., 2020; Chowd-
hery et al., 2022, i.a.) and show several emergent
capabilities (Wei et al., 2022). However, all of
these models have several inherent limitations that
can at best be partially addressed by further scal-
ing. These limitations include an inability to access
up-to-date information on recent events (Komeili
et al., 2022) and the related tendency to hallucinate
facts (Maynez et al., 2020; Ji et al., 2022), difficul-
ties in understanding low-resource languages (Lin
et al., 2021), a lack of mathematical skills to per-
form precise calculations (Patel et al., 2021) and an
unawareness of the progression of time (Dhingra
et al., 2022).

The New England Journal of Medicine is a registered 
trademark of [QA(“Who is the publisher of The New 
England Journal of Medicine?”) → Massachusetts 
Medical Society] the MMS.

Out of 1400 participants, 400 (or [Calculator(400 / 1400) 
→ 0.29] 29%) passed the test. 

The name derives from “la tortuga”, the Spanish word for 
[MT(“tortuga”) → turtle] turtle.

The Brown Act is California’s law [WikiSearch(“Brown 
Act”) → The Ralph M. Brown Act is an act of the 
California State Legislature that guarantees the public's 
right to attend and participate in meetings of local 
legislative bodies.] that requires legislative bodies, like 
city councils, to hold their meetings open to the public.

Figure 1: Exemplary predictions of Toolformer. The
model autonomously decides to call different APIs
(from top to bottom: a question answering system,
a calculator, a machine translation system, and a
Wikipedia search engine) to obtain information that is
useful for completing a piece of text.

A simple way to overcome these limitations of
today’s language models is to give them the abil-
ity to use external tools such as search engines,
calculators, or calendars. However, existing ap-
proaches either rely on large amounts of human
annotations (Komeili et al., 2022; Thoppilan et al.,
2022) or limit tool use to task-specific settings only
(e.g., Gao et al., 2022; Parisi et al., 2022), hinder-
ing a more widespread adoption of tool use in LMs.
Therefore, we propose Toolformer, a model that
learns to use tools in a novel way, which fulfills the
following desiderata:

• The use of tools should be learned in a
self-supervised way without requiring large
amounts of human annotations. This is impor-
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Your task is to add calls to a Question Answering API to a 
piece of text. The questions should help you get 
information required to complete the text. You can call the 
API by writing "[QA(question)]" where "question" is the 
question you want to ask. Here are some examples of API 
calls:

Input: Joe Biden was born in Scranton, Pennsylvania.

Output: Joe Biden was born in [QA("Where was Joe 
Biden born?")] Scranton, [QA("In which state is 
Scranton?")] Pennsylvania.

Input: Coca-Cola, or Coke, is a carbonated soft drink 
manufactured by the Coca-Cola Company.

Output: Coca-Cola, or [QA("What other name is 
Coca-Cola known by?")] Coke, is a carbonated soft drink 
manufactured by [QA("Who manufactures Coca-Cola?")] 
the Coca-Cola Company.

Input: x

Output:

Figure 3: An exemplary prompt P (x) used to generate
API calls for the question answering tool.

M itself on this dataset. Each of these steps is
described in more detail below.

Sampling API Calls For each API, we write a
prompt P (x) that encourages the LM to anno-
tate an example x = x1, . . . , xn with API calls.
An example of such a prompt for a question an-
swering tool is shown in Figure 3; all prompts
used are shown in Appendix A.2. Let pM (zn+1 |
z1, . . . , zn) be the probability that M assigns to
token zn+1 as a continuation for the sequence
z1, . . . , zn. We first sample up to k candidate posi-
tions for doing API calls by computing, for each
i ∈ {1, . . . , n}, the probability

pi = pM (<API> | P (x), x1:i−1)

that M assigns to starting an API call at position
i. Given a sampling threshold τs, we keep all po-
sitions I = {i | pi > τs}; if there are more than k
such positions, we only keep the top k.

For each position i ∈ I , we then obtain up to m
API calls c1i , . . . , c

m
i by sampling fromM given the

sequence [P (x), x1, . . . , xi−1,<API>] as a prefix
and </API> as an end-of-sequence token.2

2We discard all examples where M does not generate the
</API> token.

Executing API Calls As a next step, we execute
all API calls generated by M to obtain the corre-
sponding results. How this is done depends entirely
on the API itself – for example, it can involve call-
ing another neural network, executing a Python
script or using a retrieval system to perform search
over a large corpus. The response for each API call
ci needs to be a single text sequence ri.

Filtering API Calls Let i be the position of the
API call ci in the sequence x = x1, . . . , xn, and let
ri be the response from the API. Further, given a
sequence (wi | i ∈ N) of weights, let

Li(z) = −
n∑

j=i

wj−i · log pM (xj | z, x1:j−1)

be the weighted cross entropy loss for M over the
tokens xi, . . . , xn if the model is prefixed with z.
We compare two different instantiations of this loss:

L+
i = Li(e(ci, ri))

L−i = min (Li(ε), Li(e(ci, ε)))

where ε denotes an empty sequence. The former is
the weighted loss over all tokens xi, . . . , xn if the
API call and its result are given to M as a prefix;3

the latter is the minimum of the losses obtained
from (i) doing no API call at all and (ii) doing an
API call, but not providing the response. Intuitively,
an API call is helpful toM if providing it with both
the input and the output of this call makes it easier
for the model to predict future tokens, compared to
not receiving the API call at all, or receiving only
its input. Given a filtering threshold τf , we thus
only keep API calls for which

L−i − L+
i ≥ τf

holds, i.e., adding the API call and its result reduces
the loss by at least τf , compared to not doing any
API call or obtaining no result from it.

Model Finetuning After sampling and filtering
calls for all APIs, we finally merge the remaining
API calls and interleave them with the original
inputs. That is, for an input text x = x1, . . . , xn
with a corresponding API call and result (ci, ri) at
position i, we construct the new sequence x∗ =

3We provide e(ci, ri) as a prefix instead of inserting it at
position i because M is not yet finetuned on any examples
containing API calls, so inserting it in the middle of x would
interrupt the flow and not align with patterns in the pretraining
corpus, thus hurting perplexity.

x1:i-1  = Pittsburgh is 
             also known as

   xi:n = the Steel City

x* = Pittsburgh is 
        also known as
        [QA(What …? 
        → Steel City)] 
        the Steel City.

ci
1 = What other name is 

         Pittsburgh known by?

ci
2 = Which country is

         Pittsburgh in?

ri
1 = Steel City 

ri
2 = United States

Li(ci
1 → Steel City)

 < min(Li(ci
1 → ε), Li(ε))

Li(ci
2 → United States)

 > min(Li(ci
2 → ε), Li(ε))

1 
Sample API Calls

2 
Execute API Calls

3 
Filter API CallsLM Dataset LM Dataset 

with API Calls

Figure 2: Key steps in our approach, illustrated for a question answering tool: Given an input text x, we first
sample a position i and corresponding API call candidates c1i , c

2
i , . . . , c

k
i . We then execute these API calls and

filter out all calls which do not reduce the loss Li over the next tokens. All remaining API calls are interleaved
with the original text, resulting in a new text x∗.

tant not only because of the costs associated
with such annotations, but also because what
humans find useful may be different from
what a model finds useful.

• The LM should not lose any of its generality
and should be able to decide for itself when
and how to use which tool. In contrast to
existing approaches, this enables a much more
comprehensive use of tools that is not tied to
specific tasks.

Our approach for achieving these goals is based
on the recent idea of using large LMs with in-
context learning (Brown et al., 2020) to generate
entire datasets from scratch (Schick and Schütze,
2021b; Honovich et al., 2022; Wang et al., 2022):
Given just a handful of human-written examples
of how an API can be used, we let a LM annotate
a huge language modeling dataset with potential
API calls. We then use a self-supervised loss to
determine which of these API calls actually help
the model in predicting future tokens. Finally, we
finetune the LM itself on the API calls that it con-
siders useful. As illustrated in Figure 1, through
this simple approach, LMs can learn to control a va-
riety of tools, and to choose for themselves which
tool to use when and how.

As our approach is agnostic of the dataset be-
ing used, we can apply it to the exact same dataset
that was used to pretrain a model in the first place.
This ensures that the model does not lose any
of its generality and language modeling abilities.
We conduct experiments on a variety of differ-
ent downstream tasks, demonstrating that after
learning to use tools, Toolformer, which is based
on a pretrained GPT-J model (Wang and Komat-
suzaki, 2021) with 6.7B parameters, achieves much
stronger zero-shot results, clearly outperforming a
much larger GPT-3 model (Brown et al., 2020) and

several other baselines on various tasks.

2 Approach

Our aim is to equip a language model M with the
ability to use different tools by means of API calls.
We require that inputs and outputs for each API
can be represented as text sequences. This allows
seamless insertion of API calls into any given text,
using special tokens to mark the start and end of
each such call.

We represent each API call as a tuple c = (ac, ic)
where ac is the name of the API and ic is the cor-
responding input. Given an API call c with a cor-
responding result r, we denote the linearized se-
quences of the API call not including and including
its result, respectively, as:

e(c) = <API> ac(ic)</API>

e(c, r) = <API> ac(ic)→ r </API>

where “<API>”, “</API>” and “→” are special
tokens.1 Some examples of linearized API calls
inserted into text sequences are shown in Figure 1.

Given a dataset C = {x1, . . . ,x|C|} of plain
texts, we first convert this dataset into a dataset
C∗ augmented with API calls. This is done in three
steps, illustrated in Figure 2: First, we exploit the
in-context learning ability of M to sample a large
number of potential API calls. We then execute
these API calls and finally check whether the ob-
tained responses are helpful for predicting future
tokens; this is used as a filtering criterion. After
filtering, we merge API calls for different tools,
resulting in the augmented dataset C∗, and finetune

1In practice, we use the token sequences “ [”, “]” and
“->” to represent “<API>”, “</API>” and “→”, respec-
tively. This enables our approach to work without modifying
the existing LM’s vocabulary. For reasons of readability, we
still refer to them as “<API>”, “</API>” and “→” through-
out this section.

Schick, et al. “Toolformer: Language Models Can Teach Themselves to Use Tools.” arXiv2302.04761.
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通过上下文学习（ICL）调用工具（Plug-ins）

▶ 工具提供商撰写工具描述（Description）让模型调用
▶ 工具调用时工具描述（Description）和用户查询语句（Query）共同组成提示
（Prompt）送给模型

▶ 模型按照工具描述（Description），根据用户查询语句（Query）生成相应的工具
调用命令（Function Call）

▶ 使用工具的能力通过外挂插件（Plut-ins）方式（而不是内嵌方式）让模型使用
▶ 典型工作：

▶ ChatGPT Plug-ins
▶ TaskMatrix.AI
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TaskMatrix.AI通过插件形式调用工具

Liang, et al. “TaskMatrix.AI: Completing Tasks by Connecting Foundation Models 

with Millions of APIs.” arXiv, March 28, 2023. http://arxiv.org/abs/2303.16434.
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通过思维链(CoT)调用工具解决复杂问题(Agent，AutoGPT)

▶ 在模型已经具备使用单个工具的能力前提下，借助思维链（CoT）能力调用多
个工具解决复杂问题：
▶ 路径规划（Planning）：模型通过思维链将复杂问题分解成多个步骤，或者用户直
接指定解决问题的分解步骤

▶ 单步执行（Single Step）：模型依次调用工具完成每个步骤，以解决复杂问题。
每个步骤结束后，模型可以通过某种方法验证该步骤执行是否正确：

▶ 如果正确，则继续执行下一步骤（Going Forward）
▶ 如果不正确，则重新生成另一条命令，再次执行当前步骤（Retry）
▶ 如果不正确，而且当前步骤已经没有其他方法可以执行，那么回溯到上一步骤，重新
规划路径。（Backtracking，Replanning）

▶ 典型工作：
▶ WebShop：通过模仿学习学会访问多个网站完成购物行为
▶ LangChain & AutoGPT

26 total: 47



WebShop

▶ WebShop为语言grounded提供了几个挑战，包括理解构成指令、重新表述查
询、理解和处理网页上的嘈杂文本，以及进行策略探索。

▶ 给定一个文本指令，指定一个产品要求，代理需要遍历多种类型的网页，并发
出不同的行动来找到、定制和购买商品。

▶ 收集了超过1600个人类演示，并使用强化学习、模仿学习和预训练的图像和语
言模型对各种代理进行训练和评估。

▶ 最佳模型取得了任务成功率29%,这比基于规则的启发式方法(9.6%)要好，但远
低于人类专家表现(59%)。

▶ 论文表明，在WebShop上训练的代理在amazon.com和ebay.com上表现出很好
的模拟环境到真实环境的迁移能力，表明WebShop在开发可以实用的网页代理
方面具有潜在价值。

Yao, et al. “WebShop: Towards Scalable Real-World Web Interaction with Grounded Language Agents.”
arXiv2207.01206.
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WebShop

1

2

4.1

5

search

Search

3
Color

black khaki white

item

  Instruction:
I'm looking for a small portable folding desk 
that is already fully assembled [...]
[btn] Back to Search [/btn]
Page 1 (Total results: 50) [btn] Next [/btn]
[btn] MENHG Folding Breakfast Tray [...] [/btn]
$109.0
[btn] KPSP Folding Study Desk Bed [...] [/btn]

results

HTML mode
Simple mode

item-detail item-detailWebShopA

B

4.2

C

<latexit sha1_base64="R6DA6k7ZZ3DM9qMH4vcJ+qhPwx0="></latexit>

Yopt
<latexit sha1_base64="9sBaIEWrRB5qtq1eFm99MVAEgIo="></latexit>

Yatt

<latexit sha1_base64="IAJJT9HUejwCjrRM42li3GCW1e0="></latexit>yprice

<latexit sha1_base64="ihWgGs1AeOyLHpAROS0YCEVVlP8=">AAACeHicdVFNb9QwEHVCgRK+FnrsxeoSAZdVUiFAnLpw4UaRum3R7mo18c62Vh07sicroij9C/w3bv0hXDjh7KaCfjCSpTfvzTzbM1mhpKMkuQjCOxt3793ffBA9fPT4ydPes+eHzpRW4EgYZexxBg6V1DgiSQqPC4uQZwqPsrNPrX60ROuk0QdUFTjN4UTLhRRAnpr1fsSTUs/RZhYE1uf/iyaKJ4TfqR4uQSrw7nwoWgf3oTkfXopfMod2uXL2tInib7O1YApq/mZAbVZ1WWGlwCaaZGDrqpn1+skgWQW/CdIO9FkX+7Pez8nciDJHTUKBc+M0KWhagyUpVOtbOixAnMEJjj3UkKOb1qvBNTz2zJwvjPVHE1+x/3bUkDtX5ZmvzIFO3XWtJW/TxiUt3k9rqYuSUIv1RYtScTK83QKfS4uCVOUBCCv9W7k4Bb8D8ruK/BDS61++CQ53B+nbQfr1TX/vYzeOTbbNdtgrlrJ3bI99ZvtsxAT7FWwHL4I4+B3y8GX4el0aBl3PFrsS4e4f7jjEuQ==</latexit>

ȳ (Description): MENHG Folding Laptop Table Bed… 
:              $109.0

(Options):  { black, khaki, white }
(Attributes): { steel pipe, no assembly, portable }

(Instruction):  I’m looking for a small portable…<latexit sha1_base64="k9OxXNv9uJlv+1nWW3d/WChKjbo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUSPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwB46WM/w==</latexit>u

Reward:

1.0

Buy NowDescription Overview

Figure 1: The WebShop environment. A: An example task trajectory in HTML mode, where a user can
(1) search a query in a search page, (2) click a product item in a results page, (3) choose a color
option in a item page, (4) check item-detail pages and go back to the item page, and (5) finally
buy the product to end the episode and receive a reward r ∈ [0, 1] (§3.2). B: the results page in
simple mode for agent training and evaluation. The blue text indicates clickable actions and bold
text indicates an action selected by the agent. C: The product notation used in §3 with corresponding
examples from the product in A. The attributes Yatt are hidden from the task performer.

agents like games or 3D navigation. Moreover, the web also provides a practical environment to
deploy trained agents, with great potential for alleviating human efforts in tedious tasks (e.g. buying
products, booking appointments). While there has been prior work on building web-based tasks, they
either lack depth in the transition and action spaces, or prove difficult to scale up. Some benchmarks
only contain either a single classification task [39, 46, 31] or interactions containing only a handful of
different pages in each episode [43]. Others propose tasks with longer horizons but are either limited
to following hyperlinks for web navigation [36] or require human-in-the-loop feedback due to the
lack of an automated reward function [33].

In this paper, we introduce WebShop (Figure 1) – a large-scale interactive web-based environment
for language understanding and decision making – and train autonomous agents to complete tasks
on this benchmark. With the goals of being scalable and containing realistic language and visual
elements, WebShop emulates the task of online shopping on an e-commerce website, where the
agent’s goal is to understand a human-provided text instruction and purchase a product to match
the specifications. To do so, the agent needs to query the website’s search engine, choose items to
explore from search results, open and read their description and details, and select the necessary
options (e.g. 32 oz., red color) before clicking the ‘Buy’ button. In order to pick the optimal product
that matches user requirements, the agent may need to view and compare various products (including
backtracking between pages), and potentially perform multiple searches. WebShop contains over
one million products scraped from amazon.com, over 12 thousand crowdsourced instructions, and a
diverse semantic action space of searching text queries and choosing text buttons. It is packaged into a
convenient OpenAI Gym [5] environment and can be rendered in two modes (HTML or simple) with
parallel observation spaces that are easy for human and model respectively. Rewards are automatically
computed using a combination of programmatic matching functions that consider the attributes, type,
options and price of the chosen product, alleviating the need for human evaluation and providing a
path to scaling up interactive learning.

2

The WebShop environment.
A: An example task trajectory in HTML mode, where a
user can
(1) search a query in a search page,
(2) click a product item in a results page,
(3) choose a color option in a item page,
(4) check item-detail pages and go back to the item
page, and
(5) finally buy the product to end the episode and
receive a reward r ∈ [0, 1] (§3.2).
B: the results page in simple mode for agent training
and evaluation. The blue text indicates clickable actions
and bold text indicates an action selected by the agent.
C: The product notation used in §3 with corresponding
examples from the product in A. The attributes Y att are
hidden from the task performer.

Yao, et al. “WebShop: Towards Scalable Real-World Web Interaction with Grounded Language Agents.”
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ReAct
▶ ReAct是一个将推理和动作与语言模型结合起来的通用范式，用于解决语言推理和决策任务
▶ 考虑一个agent与环境互动以解决任务的一般设置。在时间步t，agent从环境中收到一个观察
值ot ∈ O，并按照一些策略π(at|ct)采取动作，其中ct = (o1, a1, ..., ot)是agent的背景。

▶ ReAct将agent的动作空间扩大到Ȧ = A ∪ L，其中L是语言空间。语言空间中的动作ât ∈ L，我
们将其称为思想或推理轨迹，不影响外部环境，因此不会导致观察反馈。相反，一个思想ât的目
的是通过对当前上下文ct的推理来组成有用的信息，并更新上下文ct+1 = (ct, ât)以支持未来的推
理或动作。

▶ ReAct使用语言模型以交错的方式产生与任务相关的语言推理轨迹和动作，这使得模型能够进动
作态推理，以创建、维护和调整动作的高级计划（推理到动作），同时也与外部环境（例如维基
百科）互动，将额外信息纳入推理（动作到推理）。

▶ ReAct在四个不同的基准上和最先进的基准进行了实证评估：问答（HotPotQA）、事实验证
（Fever）、基于文本的游戏（ALFWorld）和网页导航（WebShop）。

▶ 对于HotPotQA和Fever，通过访问模型可以交互的维基百科API，ReAct的性能优于普通的动作
生成模型，与思维链推理（CoT）可比。总体而言，最好的方法是ReAct和CoT的结合，允许在
推理过程中使用内部知识和外部获得的信息。

▶ 在ALFWorld和WebShop上，通过一到两个样例，ReAct提示能够胜过用103～105个任务实例训
练的模仿或强化学习方法，成功率的绝对值分别提高了34%和10%。

Yao, et al. “ReAct: Synergizing Reasoning and Acting in Language Models.” arXiv2210.03629.
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Figure 1: (1) Comparison of 4 prompting methods, (a) Standard, (b) Chain-of-thought (CoT,
Reason Only), (c) Act-only, and (d) ReAct (Reason+Act), solving a HotpotQA (Yang et al., 2018)
question. (2) Comparison of (a) Act-only and (b) ReAct prompting to solve an AlfWorld (Shridhar
et al., 2020b) game. In both domains, we omit in-context examples in the prompt, and only show task
solving trajectories generated by the model (Act, Thought) and the environment (Obs).

answers from questions in arithmetic, commonsense, and symbolic reasoning tasks (Wei et al.,
2022). However, this “chain-of-thought” reasoning is a static black box, in that the model uses
its own internal representations to generate thoughts and is not grounded in the external world,
which limits its ability to reason reactively or update its knowledge. This can lead to issues like fact
hallucination and error propagation over the reasoning process (Figure 1 (1b)). On the other hand,
recent work has explored the use of pre-trained language models for planning and acting in interactive
environments (Ahn et al., 2022; Nakano et al., 2021; Yao et al., 2020; Huang et al., 2022a), with
a focus on predicting actions via language priors. These approaches usually convert multi-modal
observations into text, use a language model to generate domain-specific actions or plans, and then
use a controller to choose or execute them. However, they do not employ language models to reason
abstractly about high-level goals or maintain a working memory to support acting, barring Huang
et al. (2022b) who perform a limited form of verbal reasoning to reiterate spatial facts about the
current state. Beyond such simple embodied tasks to interact with a few blocks, there have not been
studies on how reasoning and acting can be combined in a synergistic manner for general task solving,
and if such a combination can bring systematic benefits compared to reasoning or acting alone.

In this work, we present ReAct, a general paradigm to combine reasoning and acting with language
models for solving diverse language reasoning and decision making tasks (Figure 1). ReAct
prompts LLMs to generate both verbal reasoning traces and actions pertaining to a task in an
interleaved manner, which allows the model to perform dynamic reasoning to create, maintain, and
adjust high-level plans for acting (reason to act), while also interact with the external environments
(e.g. Wikipedia) to incorporate additional information into reasoning (act to reason).

2

(1) Comparison of 4 prompting methods,
(a) Standard,
(b) Chain-of-thought(CoT), Reason Only,
(c) Act-only, and
(d) ReAct (Reason+Act),
solving a HotpotQA question.
(2) Comparison of
(a) Act-only and
(b) ReAct prompting
to solve an AlfWorld game.
In both domains, we omit in-context ex-
amples in the prompt, and only show
task solving trajectories generated by the
model (Act, Thought) and the environ-
ment (Obs).

Yao, et al. “ReAct: Synergizing Reasoning and Acting in Language Models.” arXiv2210.03629.

28 (2) total: 47



Reflexion
▶ 基于ReAct方法，提出了一种反思(Reflexion)框架，通过语言反馈来强化语言
代理，而不是更新权重

▶ 具体来说，反思代理以文字形式对任务反馈信号进行反思，然后在一个连续记
录的内存缓冲区中维护自己的反思文本，以在后续试验中诱导更好的决策

▶ Reflexion方法的自我反思过程受到启发性函数的监督。在这个过程中，模型会
在有限的次数内尝试修正错误，从而促使其产生更多具有创新性的解决方案

▶ Reflexion应用性很强，可以提高决策和知识密集型任务的试错性能，只需要依
赖一个二元的奖励模型。它应用在更复杂任务中，可以帮助智能体学会新想
法，探索更大不可见的状态空间，并通过在过去环境中的经验形成更准确的行
动规划

▶ Reflexion可以集成各种类型(数值或自由文本)和来源(外部的或内部模拟的)的
反馈信号，并在各种任务上获得显著的改进(顺序决策制定、编码、语言推理

▶ Reflexion在HumanEval编码基准上实现了91%的pass@1准确度，超过了之前
的最先进的GPT-4(80%)
Shinn, et al. “Reflexion: Language Agents with Verbal Reinforcement Learning.” arXiv2303.11366.

29 (1) total: 47



Reflexion

Figure 1: Reflexion can be added to any decision-making approach. We enable ReAct agents to use
self-reflection to improve their own performance.

the given environment under the binary reward constraint). Then, the agent resets the environment
retry in a subsequent trial. If no self-reflection is advised, the agent adds the at and ot to its trajectory
history and queries the LLM for the next action. In practice, we set a hyperparameter limit of three
maximum reflections to be stored in the agent’s memory to avoiding queries beyond the limit of the
LLM. If the agent exceeds the maximum number of trials, fails to improve performance between two
consecutive trials, or completes the task, the run is terminated.

2.1 Setup

In a typical RL scenario, an agent is tasked to solve a problem by executing actions to learn from
observations within an environment. At time step t in state st, the agent receives an observation ot
from the environment and executes an action at based on its current policy π(at|ct). In text-based
environments, st considers ct, which is the context given to the agent based on its current state and
trajectory history, consisting of past observations and actions. In this study, we do not learn a policy
over a state space. In addition, we aim to constrain specific reward information given to the agent to
(1) prove the effectiveness of Reflexion in alignment with other works and (2) preserve the ability
to generalize the approach to a broad range of problems. Additionally, we equip the agent with a
heuristic function to detect common modes of failure.

2.2 Heuristics

A heuristic h(st, at,Ω, ε, [ao, o0, . . . , at−1, ot−1]) is defined to tell the agent when to reflect, where t
is the time step, st is the current state, Ω and ε are hyperparameters for the maximum number of repet-
itive action cycles and the maximum number of total actions allowed, and [ao, o0 . . . , at−1, ot−1]) is
the trajectory history.

h(st, at,Ω, ε, [a0, o0 . . . , at−1, ot−1]) =





1 repeat([ao, o0 . . . , at−1, ot−1]) > Ω

1 t > ε

0 o′wise

repeat is a simple function that determines the number of repetitive action cycles that yield the same
observation(s). Ω is the maximum number of identical cycles, which is set to detect hallucination of
repeated consecutive actions. ε enforces efficient planning by restricting the maximum number of
actions allowed in an environment per trial. h is designed to replace the role of a human-in-the-loop
in which a human trainer monitors the running trajectory to detect signs of hallucination or inefficient
planning.

2.3 Reflexion

If the heuristic h suggests reflection at t, the agent initiates a self-reflective process on its current
state st, last reward rt, previous actions and observations [a0, o0, . . . , at, ot], and the agent’s existing
working memory, mem. The reflection loop aims to help the agent correct common cases of
hallucination and inefficiency through trial and error. The model used for self-reflection is an LLM
prompted with two-shot learning examples of domain-specific failed trajectory and ideal reflection

3

<RX�DUH�LQ�WKH�PLGGOH�RI�D�URRP �
>���@�7DVN��FOHDQ�VRPH�SDQ�DQG�SXW �
LW�LQ�FRXQWHUWRS�

���'HFLVLRQ�PDNLQJ
7DVN��<RX�DUH�JLYHQ�D�OLVW�RI�WZR �
VWULQJV�>���@�RI�RSHQ�
�
�RU�FORVH �

�
�SDUHQWKHVHV�RQO\�>���@

���3URJUDPPLQJ
7DVN��:KDW�SURIHVVLRQ�GRHV�-RKQ �
/DQFKHVWHU�DQG�$ODQ�'HDQ�)RVWHU �
KDYH�LQ�FRPPRQ"

���5HDVRQLQJ

>���@�
$FWLRQ�WDNH�SDQ��IURP�VWRYHEXUQHU�
2EV�1RWKLQJ�KDSSHQV��>���@
$FWLRQ�FOHDQ�SDQ��ZLWK�VLQNEDVLQ�
2EV�1RWKLQJ�KDSSHQV��>���@

7KLQN��>���@�QRYHOLVW��MRXUQDOLVW� �
FULWLF�>���@�QRYHOLVW� �
VFUHHQZULWHU�>���@�FRPPRQ�LV �
QRYHOLVW�DQG�VFUHHQZULWHU�
$FWLRQ��²QRYHOLVW��VFUHHQZULWHU³

GHI�PDWFKBSDUHQV�OVW��
����LI�V��FRXQW�
�
��� �
V��FRXQW�
�
��  �V��FRXQW�
�
��� �
V��FRXQW�
�
���>���@
����UHWXUQ�
1R


6HOI�JHQHUDWHG�XQLW�WHVWV�IDLO��
DVVHUW�PDWFKBSDUHQV�����

(QYLURQPHQW�%LQDU\�5HZDUG��
�

5XOH�/0�+HXULVWLF��
+DOOXFLQDWLRQ��

>���@�IDLOHG�EHFDXVH�,�LQFRUUHFWO\ �
DVVXPHG�WKDW�WKH\�ERWK�KDG�WKH �
VDPH�PXOWLSOH�SURIHVVLRQV�>���@ �
DFFXUDWHO\�LGHQWLI\LQJ�WKHLU �
SURIHVVLRQV�

>���@�ZURQJ�EHFDXVH�LW�RQO\�FKHFNV �
LI�WKH�WRWDO�FRXQW�RI�RSHQ�DQG �
FORVH�SDUHQWKHVHV�LV�HTXDO�>���@ �
RUGHU�RI�WKH�SDUHQWKHVHV�>���@

>���@�WULHG�WR�SLFN�XS�WKH�SDQ�LQ �
VWRYHEXUQHU���>���@�EXW�WKH�SDQ �
ZDV�QRW�LQ�VWRYHEXUQHU����>���@

>���@
����UHWXUQ�
<HV
�LI�FKHFN�6���RU �
FKHFN�6���HOVH�
1R


7KLQN��>���@�6R�WKH�SURIHVVLRQ �
-RKQ�/DQFKHVWHU�DQG�$ODQ�'HDQ �
)RVWHU�KDYH�LQ�FRPPRQ�LV�QRYHOLVW�
$FWLRQ��²QRYHOLVW³

>���@�$FWLRQ��WDNH�SDQ���IURP�
VWRYHEXUQHU��
>���@�2EV��<RX�SXW�WKH�SDQ���LQ �
FRXQWHUWRS���

�F��
(YDOXDWLRQ

�G��
5HIOHFWLRQ

�H��1H[W�
7UDMHFWRU\

�E��
7UDMHFWRU\

�D��7DVN

�LQWHUQDO���H[WHUQDO�

Figure 1: Reflexion works on decision-making 4.1, programming 4.3, and reasoning 4.2 tasks.

Related work on reasoning and decision-making

Approach Self Hidden Decision Binary Memory
refine constraints making reward

Self-refine [14] ✓ ✗ ✗ ✗ ✗
Beam search [29] ✓ ✓ ✓ ✓ ✗
Reflexion (ours) ✓ ✓ ✓ ✓ ✓

Related work on programming

Approach Test Debugging Self-generated Multiple Self-reflection
Test execution execution tests languages

AlphaCode [13] ✓ ✗ ✗ ✓ ✗
CodeT [4] ✓ ✗ ✓ ✗ ✗
Self-debugging [6] ✓ ✓ ✗ ✗ ✗
CodeRL [12] ✓ ✓ ✗ ✗ ✗
Reflexion (ours) ✓ ✓ ✓ ✓ ✓

step that proposes optimizations to the previous generation. In this paper, we show that several of
these concepts can be enhanced with self-reflection to build a persisting memory of self-reflective
experiences which allows an agent to identify its own errors and self-suggest lessons to learn from its
mistakes over time.

Programming Several past and recent works employ variations of test-driven development or
code debugging practices. AlphaCode [13] evaluates a set of generations on hidden test cases.
CodeT [4] uses self-generated unit tests that are used to score generated function implementations.
Self-Debugging [6] employs a debugging component that is used to improve existing implementations
given feedback from a code execution environment. CodeRL [12] sets the problem in an RL frame-
work using an actor-critic setup to debug programs given feedback from an execution environment.
AlphaCode, Self-Debugging and CodeRL are effective in fixing less-complex program bugs, but they
rely upon ground truth test cases that invalidate pass@1 eligibility, and do not use self-reflection to
bridge the gap between error identification and implementation improvement. CodeT does not access
hidden test cases but does not implement a self-learning step to improve code writing.

Self-reflection Several recent works recognize new cognitive abilities exhibited by LLMs that
were previously considered unique to humans. Kosinski [10] show notable performance on theory
of mind (ToM) tasks at the level of young to middle-aged human children. However, Ullman [26]
argue that ToM task completion accuracy is highly dependent on specific setup and will fail to
complete trivial variations to the original problem. Moghaddam and Honey [15] show that ToM task
accuracy can be improved using better prompting strategies. Wei et al. [27] introduce the concept of
emergent properties in LLMs and discuss scaling predictions for future models. To the best of our
knowledge, our work is the first to utilize self-reflection for practical use in autonomous behavior in
language agents for reasoning, decision-making, and programming tasks. Empirically, we show that
self-reflection steps are crucial to amplifying sparse feedback for iterative learning.
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LangChain

▶ LangChain是一个用于开发由语言模
型驱动的应用程序的框架。

▶ LangChain主要拥有2个能力：
▶ 可以将 LLM模型与外部数据源进行
连接

▶ 允许与 LLM模型进行交互
▶ Langchain已经成为目前使用大语言
模型最热门的框架之一。

https://datasciencedojo.com/blog/understanding-langchain/
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AutoGPT

▶ Auto-GPT是一个开源应用程序，
它使用LLM（如OpenAI的大型语
言模型GPT-4）来自动执行多步
骤项目，来完成复杂任务。

▶ 它允许LLM自主行动，而无需人
工代理来提示其每项行动。

▶ Auto-GPT可以生成类似人类的
文本、回答问题、翻译语言、总
结文本并提供建议等任务。

https://autogpt.net/
https://aitechtogether.com/python/101823.html

31 total: 47



大语言模型调用外部工具 LLMs calling external tools

概览 Overview

方法 Methods

项目 Projects

我们的工作 Our Work

Content



通过有监督微调SFT实现外部工具调用

Huawei Confidential2

4. Our work
1. SFT

• 盘古工具学习

> 通用数据进行SFT，维持基础通用能力

> 代码开发数据SFT，夯实工具调用基础

> 多种工具数据SFT，打造办公生活助手

通用数据（~1000k）
（生成、摘要、对话等）

工具数据（~100k）
（数学、APIs、excel、画画等）

代码开发数据(~200k)
(代码生成、解释、问答等)

盘古基础
语言模型

能调用工具的
盘古语言模型
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通过上下文学习ICL实现外部工具调用

Huawei Confidential6

4. Our work  工具调用 / function calling

系统：你可以使用如下工具：
[{"name": "plugins|set_winddirection_common", "description": "内部公共意图-设置风向.", "principle": 

null, "arguments": {"carcontrol_des_location": "String: ", "device_type": "String: ", "range_type": "String: 

", "room_type": "String: ", "smarthome_instancename": "String: ", "time": "String: ", "wind_direction": 

"String: "}, "results": "String: 执行结果。"}, 

{"name": "plugins|close_home_settings_page", "description": "关闭子系统我家.", "principle": null, 

"arguments": {"room_type": "String: ", "setting_item": "String: "}, "results": "String: 执行结果。"}, 

{"name": "plugins|get_medical_treatment", "description": "看病.", "principle": null, "arguments": {}, 

"results": "String: 执行结果。"}, 

{"name": "plugins|turn_off_air_swipe_screen", "description": "关闭隔空滑动屏幕.", "principle": null, 

"arguments": {}, "results": "String: 执行结果。"}, 

{"name": "plugins|turn_off_power_saving_mode_common", "description": "关闭节能模式.", "principle": 

null, "arguments": {"mode": "String: "}, "results": "String: 执行结果。"}]

用户：帮忙把省电模式功能关了

助手：我需要使用 turn_off_power_saving_mode_common API.
<工具>工具调用:plugins|turn_off_power_saving_mode_common|{\“mode\”: \“省电\”}</工具>

工具：[output_from_turn_off_power_saving_mode_common]

用户可自定义工具列表

我可以跑代码

我可以画画

我可以查天气

工具库

……

或

embedding

embedding

基于用户 query 进行
retrieval 来获取工具列表

盘古语言模型
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通过思维链CoT实现外部工具调用的自动规划和搜索

Prompt template library 

Or

Prompt generator

Input
Produce Prompt 

(Search, generate)

LLM

Prompt

(plan including plug 

in,

CoT/ToT/GoT,

Standard)

Infer Step 

by Step

Verify 

Step by 

Step

Verifier

Result

Step by 

Step 

Score

Modify Prompt

Planner

Finial 

Verify

Final 

Score

Calculate 

step by 

step 

score

Step by 

Step 

Score
Modify Verifier

(finial, step by step)

Add to Prompt library

Or

Modify Prompt generator 

Agent形式通过调用外部工具解决复杂问题
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数学推理

Huawei Confidential2

数学问题

35 (1) total: 47



数学推理

▶ 方法步骤：
1. 生成文本代码混杂的结果，其中<code4symbol> tag用来区别其他任务，这
个tag会触发系统调用python解释器；

2. 调用python解释器执行代码，执行成功，计算结果填回文本；
3. 如果执行出错，使用模型生成的缺省结果；
4. 多次执行特性（开发中）：如果执行出错，python将错误信息发送给大模型再次
生成，达到自动修复的目标。

▶ 实验结果：
▶ 加入python解释器，在数学类任务上模型得到了显著提升（35%→86.7%）。

35 (2) total: 47



数学推理：样例

Q1: (100+(200/5)-99) / 4

Huawei Confidential13

数学能力 (Pangu-tool)
Q1: (100+(200/5)-99) / 4

Q2: 一个圆锥体，它的底半径是3厘米，高是9厘米，它的体积是多少？Q2: 一个圆锥体，它的底半径是3厘米，高是9厘米，它的体积是多少？
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数学能力 (Pangu-tool)
Q1: (100+(200/5)-99) / 4

Q2: 一个圆锥体，它的底半径是3厘米，高是9厘米，它的体积是多少？
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数学推理：样例

Q3:小红买了20.5米的布，做衣服用了10.5米，请问还剩下多少厘米的布？

Huawei Confidential15

数学能力 (Pangu-tool)

Q3:小红买了20.5米的布，做衣服用了10.5米，请问还剩下多少厘米的布？

Q4: 小胡每小时走10公里，小红每小时走5公里，小红在前，小胡在后，
两人相距20公里，同时出发，请问小胡多长时间能追上小红？

Q4: 小胡每小时走10公里，小红每小时走5公里，小红在前，小胡在后，两人相
距20公里，同时出发，请问小胡多长时间能追上小红？
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数学能力 (Pangu-tool)

Q3:小红买了20.5米的布，做衣服用了10.5米，请问还剩下多少厘米的布？

Q4: 小胡每小时走10公里，小红每小时走5公里，小红在前，小胡在后，
两人相距20公里，同时出发，请问小胡多长时间能追上小红？

36 (2) total: 47



数学推理：样例

Q5:有5筐苹果的重量相等，如果从每筐中取出10kg，那么剩下的苹果相当于原
来3筐的重量，原来每筐苹果重多少千克？

Huawei Confidential17

Q5:有5筐苹果的重量相等，如果从每筐中取出10kg，那么剩下的苹
果相当于原来3筐的重量，原来每筐苹果重多少千克？

Q6:二十加五的和乘四除以十等于
Q6:二十加五的和乘四除以十等于

Huawei Confidential17

Q5:有5筐苹果的重量相等，如果从每筐中取出10kg，那么剩下的苹
果相当于原来3筐的重量，原来每筐苹果重多少千克？

Q6:二十加五的和乘四除以十等于

36 (3) total: 47



表格处理

Huawei Confidential5

4. Our work
1. SFT
盘古-ChatExcel

表格增删改查复杂操作 数据集多元透视分析

查找

删除

添加

修改 数据分析要求

• 基于盘古语言模型代码能力生成pandas代码完成表格操作 • 生成代码借助matplotlib/seaborn等工具进行数据分析
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表格处理：样例

Huawei Confidential13

Case: ChatExcel

第一步：上传表格 第二步：表格分析：年龄分布图
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日历查询：样例

Huawei Confidential14

Case：日历

2023年1月1日已经过去多少天了？
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图片生成：样例

Huawei Confidential15

Case：作画

请画一张清明上河图风格的图片
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数学推理中的多轮工具调用：样例

Huawei Confidential8

Case：数学推理中的工具多轮调用

第一步：精确算出火车时间。

第二步：精确算出飞机时间。

第三步：精确算出飞机比火车节省的时间。

北京到深圳总共2032公里，火车的速度是212公里每小时，飞机的速度是650公里每小时，
请问哪个快？快的比慢的节省多少时间？
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基于工具反馈的自我修复：样例

Huawei Confidential9

Case: 基于工具反馈的自我修复能力

2/(√7+√5)
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基于工具反馈的例外处理：样例

Huawei Confidential10

Case: 基于工具反馈的自我修复能力

2023年2月30日是星期几？
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模型知识与工具调用结合：样例

Huawei Confidential11

Case: 知识和工具计算结合

第一步：模型得到亚洲面积。

第二步：调用工具得到结果。

非洲总面积月3020万平方千米，是全球仅次于亚洲的面积第二大洲，它和亚洲面积相差多少？
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模型知识与工具调用结合：样例

Huawei Confidential12

Case: 知识和工具计算结合

问题：100以内的质数之和是多少？
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背景 Background

大语言模型结合搜索引擎 LLMs combined with search engines

大语言模型调用外部工具 LLMs calling external tools

总结 Summary

Content



总结 Summary

▶ 大语言模型具备强大的语言能力，但在实际应用中，仍然面临知识不足、更新
不及时、推理能力差、与外部环境无法交互等缺陷，而融合搜索和调用工具是
解决这些问题的有效方法；

▶ 介绍了大语言模型融合搜索引擎的主要方法；

▶ 结合搜索引擎可以较好地解决模型知识不足和更新不及时等问题，但真实性问
题还无法彻底解决，也还面临很多新问题亟待研究；

▶ 介绍了大语言模型调用工具的三种进阶方法；

▶ 调用外部工具可以大大增强大语言模型的各种能力，通过智能体方式调用多种
工具甚至可以解决一些复杂问题，这一领域还有很大探索空间；

▶ 介绍了华为诺亚方舟实验室在这两方面的工作。
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Thank you!

把数字世界带入每个人、每个家庭、
每个组织，构建万物互联的智能世界。
Bring digital to every person, home and organization
for a fully connected, intelligent world.
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All Rights Reserved.

The information in this document may contain
predictive statements including, without limitation,
statements regarding the future financial and
operating results, future product portfolio, new
technology, etc. There are a number of factors that
could cause actual results and developments to
differ materially from those expressed or implied in
the predictive statements. Therefore, such
information is provided for reference purpose only
and constitutes neither an offer nor an acceptance.
Huawei may change the information at any time
without notice.
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